OPTRONIC LABORATORIES

STELLAR MAGNITUDES

The brightness of celestial bodies is usually measured in magnitudes. The scale of magnitudes is adjusted so that a star of magnitude +1.00 (first Magnitude) gives a luminous flux of 0.832×10^{-10} lumen cm^{-2} at a point outside the atmosphere of the earth.

The relation between the visible light received from two stars and their magnitudes is expressed by the formula:

$$
\begin{aligned}
& \quad \log _{10} \frac{l_{1}}{/ 2}=0.4\left(m_{2}-m_{1}\right) \\
& \text { or } \quad m_{2}=m_{1}+2.5 \log _{10}\left(\frac{.832 \times 10^{-10}}{/_{2}}\right) \\
& \text { or } \quad I_{2}=\frac{0.832 \times 10^{-10}}{10^{0.4\left(m_{2}-1\right)}}
\end{aligned}
$$

$$
\text { where } \begin{aligned}
I_{1} & =\text { illuminance }\left(.832 \times 10^{-10}\right) \\
& m_{1}=\text { magnitude }(1.0)
\end{aligned}
$$

M ${ }_{2}$ (MAGNITUDE)	/2 (lumens / cm²)	M ${ }_{2}$ (MAGNITUDE)	I_{2} (lumens / cm²)
-11	0.525×10^{-05}	1	0.832×10^{-10}
-10	0.209×10^{-05}	2	0.331×10^{-10}
-9	0.832×10^{-06}	3	0.132×10^{-10}
-8	0.331×10^{-06}	4	0.525×10^{-11}
-7	0.132×10^{-06}	5	0.209×10^{-11}
-6	0.525×10^{-07}	6	0.832×10^{-12}
-5	0.209×10^{-07}	7	0.331×10^{-12}
-4	0.832×10^{-08}	8	0.132×10^{-12}
-3	0.331×10^{-08}	9	0.525×10^{-13}
-2	0.132×10^{-08}	10	0.209×10^{-13}
-1	0.525×10^{-09}	11	0.832×10^{-14}
0	0.209×10^{-09}	12	0.331×10^{-14}

