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INTRODUCTION
Integrating devices generally fall into two categories: 
transmissive diffusers and reflective diffusers. Transmissive 
devices, commonly referred to as “cosine diffusers,” rely on 
scattering materials and shape to give their cosine response. 
However, scattering is strongly dependent on the wavelength of 
light so the bluer wavelengths are scattered more strongly than 
redder. This leads to the generally observed strong wavelength 
dependence of cosine response for such devices. Transmissive 
diffusers can be optimized for near-perfect cosine response, but 
only at one wavelength, and suffer from dramatically reduced 
throughput at shorter wavelengths and increasingly poor response 
at longer. Integrating spheres show little wavelength effect but 
generally have poorer cosine response. It is the purpose of this 
article to show that poor cosine response is not an inherent 
property of integrating spheres, but rather the poor designs 
currently used. With good design, integrating spheres can be 
virtually ideal devices: near-perfect cosine response with 
negligible wavelength effects.

Many studies in radiometry and photometry require 
measurements of light falling onto a flat surface. Such studies 
vary from solar UV exposure limits to comfortable office lighting 
conditions, yet all are dependent on the cosine response of the 
measurement device. A poor cosine response leads to large errors 
whenever the size, shape or orientation of the test source is 
different to the calibration source. Since these are systematic 
errors and extremely difficult to quantify, it is best to eliminate 
them as far as practicable.

Several types of cosine error exist: zenith angle, azimuth angle 
and spectral. These are generally considered independent, so 
errors should be determined at each zenith angle, azimuth angle 
and wavelength to totally describe the device. With so many 
measurements required to describe the cosine response of a 
device, it is not surprising that manufacturers often supply only 
very basic information.

MEASUREMENT OF COSINE RESPONSE
The correct measurement procedure is important in 
determining the cosine response accurately. The setup, shown in 
Figure 1, consists of a distant source or uniform collimated beam, 
an appropriate baffle, zenith and azimuth angle rotary stages 
with the center of the sphere’s input aperture at the center of 
rotation, and a monochromator/detector system to analyze 
spectral components. Zero degrees zenith angle is defined by 
reflection of the incident beam by a mirror, parallel to the entrance 
aperture, back to the source. Zero degrees azimuth is arbitrary, 
but here we adopt the most common definition for spheres 
of right-angle geometry (i.e. the input and exit ports are at 90 
degrees apart) as “the plane containing the centers of the sphere, 
entrance and exit apertures.”

MODELING SPHERE RESPONSES
Measurement of the various combinations of zenith angle, azimuth 
angle and wavelength is an arduous task requiring many hours 
or days of effort. If the spheres response could be accurately 
modeled, and verified experimentally only at appropriate points, 
then a detailed map of the cosine response could be 
generated with minimal resources. Moreover, if the cosine 
response is calculated from physical characteristics of the sphere, 
then modification of those characteristics to improve response 
will be an invaluable design aid.

 

The first stage of this model concerns the input aperture design.  
It is a truism to say that if light entering the sphere is not 
cosine dependent then little can be done inside the sphere to 
compensate. However, this is precisely what happens in most 
current designs. Most spheres are made as just that i.e. spherical, 
and then coated on the inside with several millimeters of 
reflective material. This means that two apertures now exist: one 
in the original sphere and one at the inside of the coating. Also, 
the thickness of the sphere walls and any fixtures around the 
input aperture can contribute additional apertures. When 
considering the sphere response due to input aperturing, they 
can be treated as a series of circles whose centers move relative 
to one another as shown in Figure 2. By calculating the clear 
aperture area relative to that at zero zenith angle, the attenuation 
due to input aperturing at each zenith angle can be evaluated.
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Once the light is inside the sphere it should be integrated to 
remove all directional effects. However, since light can also 
escape from the input aperture and the angle subtended from 
where the beam hits the sphere to the input aperture also varies 
with angle, we may expect a contribution from these losses to 
affect the overall cosine response of the sphere. To model this 
effect as simply as possible, several justifiable assumptions are 
made.

  1    The clear input aperture is small compared to the size of the 
        sphere. 

  2    The angle and distance to the input aperture is the same over 
        the whole of the illuminated area. This should hold true 
        providing assumption #1 is correct, except when the 
        illuminated area is close to the input aperture, but at these         
        large zenith angles aperturing effects tend to dominate 
        anyway. 

  3    The sphere coating has a constant, Lambertian reflectance.

To implement this model, two separate calculations are made: one 
for the losses from a sphere, and the other for losses from a plane 
surface passing through the center of the sphere (representing the 
baffle) as shown in Figure 3. Using appropriate combinations of 
plane and spherical trigonometry at each zenith and azimuth 
angle, the solid angle subtended to the input aperture, as a 
fraction of 2   steradians, is multiplied by the cosine of the angle 
from the center of the illuminated area to the center of the input 
aperture. This value is therefore the fractional loss from the 
sphere at those angles. Since values are calculated as fractions of 
the total, any variations in the illuminated area cancel out.

 

By projecting the illuminated area of the plane onto the actual 
dimensions of the baffle, as shown in Figure 4, the fractions of 
light hitting the baffle and sphere can be determined. First, the 
central positions, relative to the baffle, of the beam intersecting 
with the plane are determined. Next, the overlapping area of the 
beam and baffle, taking account of the change in the beam shape 
with angle, is determined as a fraction of the total beam area.  
Multiplying the losses from the plane and sphere by their 
respective fractions then gives the total loss at that zenith and 
azimuth angle. By subtracting this value from one, the fraction of 
light retained within the sphere, i.e. the responsivity taking this 
effect into account, is determined.

DESIGNING THE SPHERE
Multiplying the responsivities of aperturing and losses from the input 
aperture by the cosine of the zenith angle gives the overall cosine 
response of the sphere. Modeling different input configurations, it 
is found that acceptable aperturing responsivity is only obtained 
by having the input port level with the inside of the sphere. This is 
achievable in practice by introducing a flat side to the sphere, as 
shown in Figure 5.

The design of the baffle is also important for proper operation of the 
sphere. The exit port should not “see” any light directly from the
input or from direct illumination of the sphere (the so-called “first 
strike”) since both of these are dependent on the zenith and azimuth 
angle. The baffle should therefore cover all input/exit angles and be 
slightly larger than the field-of-view of any exit optics. A suitable 
baffle design satisfying these conditions is shown in Figure 6. This 
baffle should not be placed too near the exit port, nor should it 
intercept the zero zenith angle beam of the sphere, so the actual 
size is likely to be proportional to the sphere diameter.
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COMPARING THEORY AND PRACTICE 
These rather simple design ideas were used in modeling, and 
manufacturing, spheres of 4” and 6” diameter. Measurements 
of the cosine response on both spheres agreed well with 
predictions, and the results are presented for the 6” sphere. The 
sphere design, including mounting flanges for a dome window 
and exit attachments, is shown in Figure 7. Using a spreadsheet, 
the responsivity at 5 degree intervals in both zenith and azimuth 
angles was calculated for this sphere. Since the results are close 
to ideal, they are best expressed as % error relative to ideal  
cosine response. Figure 8 shows a 3D plot of calculated %error 
for the different zenith and azimuth angles. It is readily seen that 
if this sphere were used for sunlight measurements, with the 
baffle facing South (in the Northern Hemisphere), negligible 
cosine errors would be anticipated for all results where the zenith 
angle was less than 75 degrees.

Measurements on this sphere, in 15 degree zenith angle steps, 
at 0 degree and 90 degree azimuth confirm that the calculated 
values of the response (Figures 9 and 10) are accurate. The 
measured response was determined at wavelengths of 300 nm,
 400 nm, 500 nm, 600 nm, 700 nm and 800 nm for all angles. No 
differences beyond normal experimental error were seen, 
confirming the expected lack of wavelength dependence in the 
responsivity of the sphere. Some points near the baffle are some 
2-3% different for measured and calculated responses. This is 
likely to be the result of multiple localized reflections, each of 
which looses light through the entrance port, before total 
randomization within the sphere is achieved. These localized 
multiple reflection effects, although calculable, are beyond the 
scope of this simple model and offer little significant improvement 
in accuracy.

CONCLUSION
Integrating spheres can be near perfect devices when 
designed properly, giving highly accurate cosine response at 
all wavelengths. The sphere response can be accurately 
estimated from relative simple formulae on a spreadsheet 
program, as verified by actual measurements. Moreover, full 3D 
characterization is possible by calculation, enabling components 
to be optimized and providing detail to the generally incomplete 
data provided by some manufacturers. Practical designs can 
benefit from this modeling, providing refinements in critical areas. 
A prime example, the Young & Schneider design makes use of all 
of the optimization features and is commercially available from 
Optronic Laboratories.

RELATED STUDIES
As mentioned earlier, global sunlight measurements require 
integrating devices with near-ideal cosine response. For further 
information, the reader should refer to the paper The Influence 
of Cosine Response on Global Sunlight Measurements by Young, 
Schneider and Austin.
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